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Techniques are considered for improving the numerical approximation to a problem which 
possesses corner singularities. The particular problem considered here is taken from solid state 
electronics. Refined numerical solutions are obtained using two techniques. The first employs 
a non-uniform grid with a smaller spacing of the mesh points in the neighbourhood of the 
singularities. The second technique involves a transformation of the problem to one which is 
free from singularities. The dynamic AD1 method, which needs no a priori relaxation 
parameters to accelerate convergence, is used to solve the discretized problem in both cases. 
0 1986 Academic Press, Inc. 

1. INTRODUCTION 

In solid state electronics the designers of PIN diodes are interested in measuring 
the performance of the diode subject to changes in various design parameters. Of 
particular interest is the variation of the effective lifetime of the diode as a function 
of its base-width. There are obvious advantages in producing a good mathematical 
model since carrying out these tests in the laboratory could be a lengthy and expen- 
sive process. A description of the problem together with the derivation of the 
equations used in this paper are to be found in Aitchison and Berz [2]. The model 
gives rise to a coupled pair of elliptic partial differential equations. This problem 
has been solved numerically by Aitchison [l] who used Newton’s method and a 
sparse matrix routine and by Phillips [7] who used the dynamic ADI method. Both 
these papers ignored the corner singularities. 

In this paper we consider numerical techniques to treat the corner singularities 
which the problem possesses. In Section 2 we introduce the differential equations 
and discuss the nature of the singularities. The method of discretization, which uses 
a finite difference approximation on a non-uniform mesh, is described in Section 3. 
In Section 4 we review the dynamic AD1 (DADI) method for solving a system of 
algebraic equations. In Section 5 a transformation of the problem to one which has 
no singularities is described. We make our concluding remarks in Section 6. 
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2. THE GOVERNING DIFFERENTIAL EQUATIONS 

The problem is formulated in terms of the carrier density c(x, y) and a stream 
function U(X, y). The behaviour of diodes which are effectively 2-dimensional and of 
rectangular cross section can be described by the equations 

(1) 

(2) 

in the region R = {(x, y): 0 < x < 2,0 < y 6 4). The associated boundary conditions 
are 

ax (i+b)ay’ax on x=0, (3) 

ac -1 au au (l+b)ac 
-=--,-= --- ax (i+b)ay ax b ay 

on x=2, (4) 

on y=O, (5) 

ac 
& = - SC3 

u= -1 on y=4, (6) 

where s and b are positive constants. The particular values used in this paper are 
5.0 and 2.7 respectively. 

This problem possesses singularities at the points P(O,4) and Q(2,4). To 
establish this we present the following argument. Consider the point P. The region 
R is translated so that this point lies at the origin. This situation is illustrated in 
Fig. 1. On Ox we have au/ax = 0 since u = - 1. Therefore au/ax + 0 at the origin. On 

au = (l+b)z 
ax ay 

ac b au -=-- 
ax (l+b) ay 

FIGURE 1 
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OA we have that au/& = (1 + b) &/i?y. Therefore, since au/ax -+ 0 at 0, we have 
aclay + 0 at 0. On Ox we have aclay = --SC and therefore c --f 0 at 0. However we 
know from the model that ~(0, 0) # 0. This means that the boundary conditions are 
not compatible at this point and so a boundary singularity occurs. So one or both 
of the following holds: 

(i) lim,,,+(au/ax)#lim,,,-(au/ax), 
(ii) lim,,,+(aclay)Zlim,,,-(aclay). 

If the limit of au/ax at 0 does not exist then a*u/ax* is unbounded near 0. Similarly 
d2c/ay2 is unbounded near 0 if the limit of &jay does not exist there. Since V2c = c 
this means that a2c/ax2 is also unbounded near 0. Similarly 8’u{ay* is unbounded if 
a2u/ax2 is unbounded near 0. 

We can perform a similar analysis for the corner at the point Q to establish that 
there is a singularity there of the same type. Numerical results can be obtained by 
ignoring the singularities. However the quality of the solution is likely to be poor in 
the vicinity of the singularities. 

Attempts to determine the behaviour of the singularity in closed form failed due 
to the coupling of the dependent variables through the differential equations and 
boundary conditions. 

3. FINITE DIFFERENCE APPROXIMATION ON A NON-UNIFORM GRID 

In most elliptic problems singularities that occur on the boundary do not 
penetrate into the interior of the region. However, the solution may change very 
rapidly near the singularity and one or more of its higher derivatives becomes very 
large, which is the case with the problem being considered. The local truncation 
error of the finite difference equations involves terms like hP multiplying some pth 
derivative, and if these get large near the singularity we would like to make h 
correspondingly smaller in these regions. To maintain the order of accuracy in our 
approximation in situations like these a uniform grid with an extremely tine mesh 
may be used to obtain a sufficient number of points in the vicinity of the singularity. 
This is wasteful and expensive since the points are distributed densely away from 
these regions, where they may not be needed. Kalnay de Rivas [6] suggested a dif- 
ferent approach in which a change of independent variable is made which maps the 
domain into a new coordinate system where the variations of the solution are not 
so rapid. This approach is sketched out below. 

The grid intervals are varied by defining stretched coordinates c and q such that 
x =x(c) and y = y(v) where the grid intervals dr and Aq are constant and x and y 
are the old physical coordinates. Kalnay de Rivas [6] and Jones and 
Thompson [S] show how to express derivatives in terms of the stretched coor- 

581/64/2-13 
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din&es. For example, we can express the first derivatives in terms of < in the foliow- 
ing manner 

au au dt -=-.-. 
ax a< dx (7) 

Equation (7) can be discretized using central differences to give the following 
approximation: 

au ui+l,,-ui-l,, 4 
ax’ 245 ‘z &’ 

where v;,~ is the value of v at the grid point (xi, y,) with xi= x(i A() and 
yj = y(j A?). The transformation can be differentiated numerically using central dif- 
ferences to obtain the following approximation to the first derivative 

a0 vi+I,j-“i-I,j 

ax’ 

245 ui+I.j-Vi-I,j 

245 ‘Xi+I-Xi-1= Xi+l-Xi-1 

Finite difference approximations for higher order derivatives are obtained in a 
similar way. 

Since we have used central differences in deriving formulae like (8), they are for- 
mally second order in A[. Jones and Thompson [S] give the exact form of the local 
truncation error of this approximation. They also point out that these errors will be 
small provided that the stretching function has the property that its derivatives are 
small where the derivatives of the solution are large, and vice versa. 

Consider a function defined in the interval 0 Q x 6 1 with a singularity at the 
point x = 0. The stretching function should possess the following properties: 

(a) dx/dt = 0 at x = 0. This will ensure a concentration of grid points near 
x = 0. Elsewhere we should have dx/d( # 0. 

(b) dx/d( should be finite over the whole interval since if dx/d{ becomes 
infinite at some point then the mapping x = x(r) will give poor resolution near that 
point. This resolution cannot be improved by increasing the number of points since 

The following are examples of good stretching functions: 

(i) x(r) = t2. This is a suitable function if there is a singularity or boundary 
layer at x=0. 

(ii) x(~)=sin2($$). This mapping produces concentrations of grid points 
near the points x = 0 and x = 1. 

(iii) x(c)= tan-‘(x(5---f)). This has a similar effect as (ii). 
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Let x(r) and y(q) be two grid stretching functions with constant grid intervals A(! 
and Aq, respectively. The region R is covered with a variable grid defined by the 
above mappings. We define ci,j and uLi to be the values of c(x, y) and U(X, y) 
respectively at the grid point (xi, yj). The finite difference equations are constructed 
using the integration method of Varga [S]. This method was used by Aitchison [l] 
and Phillips [7] who solved the problem on a uniform grid. This technique is used 
because the conservative form of Eq. (2) is retained in the finite difference scheme. 

Let the region ri,j be that part of the rectangle +(xi + xi- 1) 6 x < i(xi + xi+ ,), 
ttYj+Yj-l)GYGttYj+Y,+l ) which lies within R. Let s;,~ be the boundary of the 
region ri,j. Integrating equations ( 1) and (2) over the region ri,j and applying 
Green’s theorem we obtain 

s “ds-jj” cdxdy=O, s,,, an r&i 
(9) 

(10) 

where n is the outward drawn normal. At internal points we obtain the following 
approximations, making use of the approximation (8), 

(ci+I,j-ci,j) 
2(xi+ I -xi) 

tYj+l-Yj-l)+:C;~~,(lr(‘i.‘: (Y,t+l-Yj-1) 
I rl 

+ (ci,j+ 1 - ci,j) 
2tYj+l-Yj) 

-~Ci,j(x~+l-xi-l)tYj+l-Yj-l)=O~ (11) 

(Yj+I~Yj-l~~ui+l,j~ui,j~+~Yj+1~Yj-l~~ui-l,j~ui.j~ 

(ci+ 1,j + ci,j)(xi+ 1 - xi) tc;- l,j+ ci,j)(xi-xi- 1) 

+(Xi+~-Xi~l)(Ui,j+l-Ui,j)+(Xi+l-Xi-l)(Ui,j-l-Ui,j)=~ 

Cci,j+ 1 + ci,j)(Y,+ 1 - Yj) (ci,j-I+ci,j)(Yj-Yj-I) ’ 
(12) 

where 0 < i < N, 0 < j < 2N. The finite difference approximation around the boun- 
dary is constructed in a similar manner. 

The system of finite difference equations are solved using the DAD1 method 
which we describe in the next section. The problem is solved on the following non- 
unil&m grids: 

(a) x(r) = 1 + tan-‘(5 - 1/2)/tan’(1/2), 
y(q)=4 tan-‘(5l)/tan-‘(5). (13) 

(b) x(5) = 2 sin’(+c<), 

Y(?)=4{1 -t1 -d’>. (14) 
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TABLE I 

Number of DAD1 Steps 

Mesh Uniform grid Grid (a) Grid (b) 

5x 9 204 312 348 
9x17 288 372 708 

17 x 33 552 540 1548 

These grid stretching functions are chosen to give a smaller spacing of the grid 
points in the neighbourhoods of the singularities. The following constant grid inter- 
vals are chosen: 

(i) d< = 0.25, Aq=O.125; 
(ii) dl= 0.125, Ay =0.0625; 
(iii) Al =0.0625, Aq = 0.03125. 

These grids defined by (i), (ii), and (iii) have respectively 5 x 9, 9 x 17, and 17 x 33 
points. 

We compare the results obtained on these non-uniform grids with those obtained 
on a uniform grid with the same number of grid points in each direction. We use as 
our stopping criterion that the maximum value of the difference between successive 
iterates at the grid points is less than 10e6 in magnitude. 

Table I gives the number of DAD1 steps required to attain the tolerance. The 
values of c(x, y) at points P and Q are given in Table II. From these results we see 
that the DAD1 method with grid (b) takes longer to converge than with grid (a). 
This is because in grid (b) the points are closer together in the neighbourhoods of 
the singularities. In Section 6 we show by consideration of the local truncation error 
and also an analysis of difference tables that the approximation obtained on grid 
(a) is more accurate in the neighbourhoods of the singularities. 

TABLE II 

Values of c(x, y) in the Top Corners 

Mesh 

5x9 

9x 17 

17x33 

Values Uniform grid Grid (a) Grid (b) 

c(O, 4) 0.0591 0.058 1 0.0629 
c(2,4) 0.0196 0.0188 0.0194 

c(O, 4) 0.0682 0.0693 0.0758 
c(2,4) 0.0203 0.0200 0.0208 

4x4) 0.0749 0.0766 0.0819 
c(2,4) 0.0209 0.0209 0.0216 
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4. A DYNAMIC AD1 METHOD 

Here we describe how the DAD1 method of Doss and Miller [3] can be used to 
obtain a numerical solution to this problem. The AD1 approach first converts 
Eqs. (1) and (2) to the parabolic equations 

ac a% a% 
t=Q+@-C, (15) 

(16) 

whose steady state solution, if one exists, solves Eqs. (1) and (2). The parameter 3, 
controls the interaction between the equations. When these equations are dis- 
cretized in time it means that, effectively, we use different time steps for the two 
equations when 1# 1. The value of I is chosen to be 0.05 in all our calculations, 
after some experimentation. 

Since Eqs. (15) and (16) are parabolic they may be advanced in time by a direct 
method and the complete solution procedure may be regarded as a single iterative 
scheme. Our interest is not in solving the parabolic equations (15) and (16) 
accurately for finite times but to reach the steady state as quickly as possible. 
Therefore the DAD1 method is used since it uses a strategy that attempts to keep 
the time step dt within a region where convergence is fast. An advantage of using 
an automatic step size changer is that it avoids the necessity of choosing a priori 
iteration parameters. 

Each step of the DAD1 method comprises two double sweeps of the AD1 
iteration with time step At together with a book-keeping double sweep of the AD1 
iteration. At the end of the step we use a computerized strategy to determine how to 
change At for the next step. The strategy of Doss and Miller [3] attempts to 
recognise instabilities as they start to occur and to bypass them by decreasing At. In 
their paper Doss and Miller give theoretical justification of this strategy for a model 
problem. Although their analysis of the step size strategy rests on rigid assumptions, 
they obtain good results in situations where these no longer hold. 

The reader is referred to Phillips [7] for an outline of the algorithm used to solve 
this problem by the DAD1 method on a uniform grid. The extension to a non- 
uniform grid is straightforward. Detailed discussions of the AD1 method and its 
implementation can be found in Varga [8] and Young [9]. 

5. TRANSFORMATION METHOD 

In this section we use a suitable transformation to map the problem in the 
neighbourhoods of the singularities to one which is free from singularities. To start 
with we assume that we have solved this problem in the region R using a uniform 
grid. We aim to improve the accuracy of our approximation near the singularities. 
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Consider the singularity at the point P(O,4). The rectangle R is translated so that 
this point lies at the origin. Let the sector S,,,, be defined by 

sM= {(I, e):O<rQMh,-+r6e<o}, 

where M is a positive integer and h is the mesh size of the uniform grid, This 
situation is illustrated in Fig. 2. By means of the transformation 

p = -log r, 0 = tan’( y/x), (17) 

where r* = x2 + y*, the sector S, is transformed to the semi-infinite strip T,, where 

T,,, = {(p, 0): -log(M) 6 p < co, -4~ < 8 6 O}. 

With the change of variable (17) the partial differential equations (1) and (2) 
become 

(18) 

(19) 

As p --) 00, r + 0, so for a sufficiently large value of p, say P, we are sufficiently close 
to the origin for both c and u to be constant along the arc r = eep, - ;Z < 8 < 0. So 
we close off the semi-infinite strip at p = L where L > -log(Mh). Let TMI,L be the 
rectangle 

This is illustrated in the p - 8 plane in Fig. 3. 
We now introduce the boundary conditions used to solve the differential 

equations (18) and (19) in the rectangle TM,L. The lines x = 0 ( - Mh 6 y < 0) and 
y = 0 (0 <x 6 M/z) are mapped under the transformation to the lines 0 = -$c and 

% 

/’ 
,’ 

FIGURE 2 
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-log(Mh) 
0 

467 

FIGURE 3 

0 = 0, respectively, for - log(Mh) < p < L. Therefore the boundary conditions along 
these lines are given by 

& b au -=-- 
ae (1 +bpp’ 

on 0= -+c, 

ac 
2%’ --se-PCT 

u= -1 on t?=O. 

Along the line p = L we impose the conditions 

ac au =&=o, G==O’ 

since both c and u tend to some limiting value as p + co. Along the line 
p = -log(M) we obtain values of c and u at certain points by bilinear inter- 
polation. These points will be the mesh points lying on p = -log(M) and details 
of the interpolation will be given later. 

We are now in a position to solve the partial differential equations (18) and (19) 
together with the associated boundary conditions in the rectangle T,,,. T,,, is 
covered with a rectangular mesh with mesh length h, in the p-direction and h2 in 
the e-direction. The problem is discretized using the technique described in Sec- 
tion 3. The resulting difference equations are solved by the DADI method. 

The corner situated at the point Q(2,4) is treated in a similar fashion. Let W be 
the region which is formed from R be removing squares of side (M - 1)h from the 
top right- and left-hand corners. The details of the procedure we use to obtain more 
accurate approximations near the singularities are given in the following algorithm. 

ALGORITHM. (a) Solve Eqs. (1) and (2) in the region R using a uniform grid. 
The DAD1 method is used to solve the discretized equations. 
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(b) Set u’ and cr to be the vectors of the current values of u and c respectively 
at the grid points. Let N, and N2 be integers such that N,h, = L + log(Mh) and 
N,h, = $r. We require the values of u and c at the points of intersection of the lines 
y= -kn/(2N,), k=O, l,..., NZ, with the boundary r = A4h of the sector S,. These 
will then be the values at the mesh points on the line p = -log(Mh) in the p - 8 
plane. This procedure refers to the transformation of the left-hand sector. A similar 
procedure is performed for the right-hand sector. The interpolation is described for 
the particular case shown in Fig. 4. Since we can determine the positions of the 
points A and B we can find the values of u and c at these points by linearly inter- 
polating values at C and D, and D and E, respectively. We then linearly interpolate 
these values at A and B to obtain values at F. 

(c) Solve the transformed equations (18) and (19) in each of the rectangles 
T starting from some initial guess. When we come to step (c) other than for the 
Iirtt’time we use the previous values to start the iteration. Again we use the DAD1 
method to solve the discretized equations. The stopping criterion is that the 
maximum modulus of the difference in successive iterates is less than 10P4. 

(d) Use linear interpolation to calculate values of u and c at points of T,,, 
which correspond to mesh points of R lying within the sectors S,. This updates the 
values of u and c at the mesh points within S,. 

r = Mh 

/ 

ka 
-+Y = -2N, 

FIGURE 4 
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TABLE III 
Variation of Corner Values with M 

M 40,4) c(2,4) 

2 0.083 1 0.0211 
3 0.0789 0.0210 
4 0.0767 0.0211 
5 0.0768 0.0209 
6 0.0769 0.0212 

(e) Solve the discretized forms of Eqs. ( 1) and (2) in W using the DADI 
method. We use the same stopping criterion as in step (c). Set uF and cF to be the 
vectors of the current values of u and c respectively at the grid points of R. 

(f) If IIuF- ~‘11 o. < E and lIcF- c’ll m < E, where E is some tolerance, then the 
algorithm is terminated. If not, go to step (b). 

Numerical results obtained using the above algorithm are shown above. The 
mesh length, h, of the uniform grid on R was chosen to be 4. The values of N,, N,, 
and h, are chosen to be 37, 4, and t, respectively. This means that in the case when 
M= 2 we have that L = 10.63. This value of L corresponds to the value of 
Y = 2.4 x 10P5. We experimented with the position of L so that c and u did indeed 
tend to some limiting value as p + co. The tolerance, E, is chosen to be 10e4. The 
value of M is chosen so that the two sectors S, do not intersect, i.e., M< 7. The 
values of c at the points P and Q are shown in Table III for various values of M. 

6. CONCLUSIONS 

The iterative solution of finite difference equations constructed on a nonuniform 
grid usually presents great difficulties. This is due to the problem of finding suitable 
parameters for the acceleration of convergence of any selected iterative method. 
Hence, an advantage of the DAD1 method over standard iterative methods for 
solving problems of this type is that we do not require an a priori choice of 
parameters to accelerate convergence. 

Although the local truncation error of the finite difference approximation to the 
first derivative on the non-uniform grid is formally second order in d[, the term of 
0(4<‘) contains derivatives of the stretching function which will be large in certain 
areas if there is strong mesh stretching and large variation in the grid. The local 
truncation error of the first derivative is given by the expression 
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TABLE IV 

Differences of c( 1, y) with a Uniform Grid 

Y 41, Y) s2 s4 

4.000 0.0133 

3.875 0.0215 

3.750 0.0294 

3.625 0.0367 

3.500 0.0435 

3.375 0.0498 

3.250 0.0555 

3.125 0.0608 

3.000 0.0655 

82 

79 

73 

68 

63 

57 

53 

41 

-3 
-3 

-6 -4 
1 

-5 -1 
0 

-5 -1 
1 

-6 1 
0 

-6 0 
0 

-6 

TABLE V 

Differences of ~(0, y) with a Uniform Grid 

Y C(O,Y) s2 64 

4.000 0.0749 

3.875 0.0989 

3.750 0.1074 

3.625 0.1169 

3.500 0.1253 

3.375 0.1330 

3.250 0.1401 

3.125 0.1467 

3.000 0.1527 

240 

85 

95 

84 

71 

71 

66 

60 

-155 
165 

10 - 186 
-21 

-11 25 
4 

-1 -3 
1 

-6 0 
1 

-5 -2 
-1 

-6 
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TABLE VI 

Differences of ~(0, y) with Grid (a) 

Y 40, Y) b2 h4 P 

4.000 0.0766 
58 

3.982 0.0824 -17 
41 7 

3.963 0.0865 -10 -1 
31 6 -3 

3.942 0.0896 -4 -4 6 
27 2 3 

3.920 0.0923 -2 -1 -2 
25 1 1 

3.897 0.0948 -1 0 1 
24 1 0 

3.872 0.0972 0 0 
24 1 

3.845 0.0996 1 
25 

3.816 0.1021 

TABLE VII 

Differences of ~(0, y) with Grid (b) 

4.000 0.0819 

3.996 0.0832 

3.984 0.0852 

3.965 0.0876 

3.938 0.0906 

3.902 0.0942 

3.859 0.0982 

3.809 0.1027 

3.750 0.1075 

13 

20 

24 

30 

38 

40 

45 

48 

7 
-3 

4 
2 

6 
2 

8 
-6 

2 
3 

5 
-2 

3 

5 
-5 

0 -3 
-8 

-8 25 
17 

9 -31 
-14 

-5 



412 TIMOTHY N. PHILLIPS 

Near a singularity the higher derivatives of u become large and therefore the coef- 
ficient of (At)* is small provided that the derivatives of the stretching function are 
small there. For the grid transformation given by (14) this is not the case and so the 
coefficient of O(d[*) of the local truncation error of the resulting approximation 
near the singularities is not small. 

The results obtained using uniform grids mainly show a good agreement and the 
convergence is approximately quadratic except at the points P and Q. The bad 
results at these points are due to the singularities. This is illustrated in Tables IV 
and V which are difference tables of ~(1, y) and ~(0, y) respectively with y taking 
values between 3 and 4 at intervals of 0.125. We can see from Table IV that the dif- 
ferences of c( 1, y) are well behaved. Table V illustrates the fact that there is a 
singularity at the point P since the differences diverge there (see Fox [4]). 
Tables VI and VII are tables of differences of ~(0, v) in terms of equal intervals in 
the stretched coordinates given by (13) and (14) respectively. The differences in 
Table VI are reasonably well behaved suggesting that the approximation obtained 
using the grid given by (13) is fairly accurate. The differences in Table VII appear 
to be rather less satisfactory. 

However, it is preferable to leave ourselves with the task of solving a non- 
singular problem, when this is possible, for which numerical methods of finite dif- 
ference type have a much sounder basis. This is an advantage of the transformation 
method which maps the problem in the vicinities of the singularities into a problem 
free of singularities. From Table V we see that the effects of the singularity are local 
in nature and so the finite difference approximation computed at points at a 
reasonable distance from the singularities is accurate. 

From the above discussion we would expect the results from the DAD1 method 
with grid defined by (13) and the transformation method to be accurate and indeed 
there is good agreement between them. However, it is worth noting that the DAD1 
method with a variable grid is easier to implement than the transformation method. 
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